11. ARCHITECTURE

The architecture of the University is, on initial glance of the first time visitor, rather nondescript. However, after that visitor enters the core and experiences the tropical landscaping of the core’s axis and the burgeoning landscaped axes to each side of the core, the architecture is recognizable as a highly distinct version of contemporary. It is nondescript on purpose, and is distinct in that it is characterized by design decisions made in awareness of the aggressive atmosphere of the Island’s location and its exposure to potential hurricane winds and tides. It is also unique in that its severity serves as a considered back drop and contrast to the intense landscaping.

Heavy concrete walls with a minimum of openings often face outward like fortified walls. Walls facing inward often have glass to embrace the landscape. The choice of materials and details also reflect attention to the aggressive atmosphere. The landscape design has utilized the exterior concrete walls in a highly effective way to catch the shadows of palm trees.

As new buildings are added to the outside of the core, they can repeat this “fortification” strategy and face glass inward toward new tropical landscapes and palm tree shadows on the formerly exposed walls.

DESIGN GUIDELINES

SITE
The location of the University’s campus on Ward Island places it in an extremely aggressive coastal environment of heat, salt air, and humidity. In addition there is a corrosive industrial atmosphere in the general area. Site selection and orientation of building foot prints should take the aggressive atmosphere into account when ever possible.

Buildings should continue to be oriented inward towards the core—solid on the outer face and open on the inner face. The largely north to south orientation of the core’s axis and its buildings presents the least wall area towards the open bodies of water on the north and south sides of the Island. This process of orientation also responds to the 1991 Campus Master Plan which called for “addressing the water” which is at both ends of the core’s axis. This process of orientation should be continued.

Design of buildings on the outer edge of the expanding core should consider architectural features that can act as debris filters in the event of a storm. Huge rafts and walls of debris both natural (trees and tree trunks) and man-made (cars, parts of collapsed buildings, etc.) are carried by hurricanes in coastal areas such as the Corpus Christi Bay. These floating accretions can bring great pressure against structures.

Compact and dense siting of buildings in their groupings is another way to defend against dangerous flotsam and jetsam of storms.

STYLE
ORIGINAL CAMPUS (PRIVATE RELIGIOUS UNIVERSITY)
The style of the earliest existing buildings of the original campus is of austere geometric shapes probably referred to as contemporary. The shapes of the building tended toward a constant rectilinear pattern after the construction of the single round building (presently the Student Services Center). Refer to Illustration Nos. 2.4 and 2.5. Also refer to Illustration No. 11.1 STUDENT SERVICES CENTER.
In the Texas A & I period the style of the original campus was continued. The 45 degree angle was added to some of the rectilinear buildings to achieve some variety and provide more window surface for views to the water. Refer to Illustration No. 2.6. Also refer to Illustration No. 11.2 CORPUS CHRISTI HALL.
TEXAS STATE UNIVERSITY SYSTEM
The austere and geometric style of the original campus continued to evolve during the period of the State University of Texas period. Refer to Illustration No. 2.7.

TEXAS A & M UNIVERSITY SYSTEM / TAMU — CORPUS CHRISTI CAMPUS
HARMONY. In the Texas A & M period of the campus development buildings have become larger, taller, and more refined while maintaining the general harmony of the existing campus. The newest building, Bay Hall, is a good example of this evolving style and continuing harmony. Refer to Illustration 11.3 BAY HALL, 2006.

Illustration No. 11.3 BAY HALL, 2006

STORM DEFENSE. Other than the first floor elevation of about 17 feet above mean sea level (not noticeable) and the north to south orientation of the buildings there is little in the architectural style that suggests defense from storms. The raising of all or part of the first floor of new building on round concrete columns could help convey a special style of architecture for the Island as well as provide shaded outdoor spaces and loggias adjacent to the lush tropical landscaping of the interior of the core. This style is appropriate for a campus located on the riparian edge—on the edge of the sea.

If permanent University-built-and-owned housing was eventually built on the south side of the island, it could be built on columns in a similar manner. This housing could then serve as a storm debris filter for the core along that edge of the Island. External verandas, sand tan stucco walls, and metal hip roofs (galvanized steel or copper, not red) could establish an appropriate and unique “Neo Coast Guard Station” style completely unique and entirely appropriate functionally and visually for the riparian edge of its site.

MATERIALS AND COLORS. Mostly the buildings have been pre-cast concrete, poured-in-place concrete, and some masonry of brick that matches the color of the concrete. The concrete is a warm toned concrete either by mix of the material or by coating. The University refers to the color of the buildings as “sand tan”.

An interesting second color of wall material has recently been added to the palette. The terra cotta red brick found on the loggia of the Center for Instruction and on the Performing Arts Center should be embraced but kept as an accent and not a main theme. The earthy red is a great complimentary color when it serves as backdrop to the lush landscaping of the interior of the core. Refer to Illustrations No. 11.4 TERRA COTTA BRICK FOR ACCENT.

63
Since galvanizing of exposed steel is an important part of the architecture of aggressive environments, this color should also be adapted as appropriate to the palette of materials and colors. As mentioned above it can be carried through on roofs where appropriate to the design. Natural aluminum also carries this color into the palette.

SHAPE AND FORM. Rectilinear buildings should continue to be built unless the function calls for a different shape. However, the curve is always a welcomed shape in a rectilinear world. Refer to Illustration No. 11.5 EARLY CHILDHOOD DEVELOPMENT CENTER.
As mentioned in STORM DEFENSE above, the north to south orientation of the axes of building footprints is appropriate and useful and should be continued unless a special circumstance dictates a different orientation. This orientation also provides the most shade during the day.

Single story buildings from the earliest days of the University have largely been replaced. Given the limits of buildable area on the Island, the height of buildings should probably be at least three stories and more, but probably not more than six (five stories functionally from the second floor level of the pedestrian bridges). When and where possible the tallest buildings (six stories) should be built towards the core axis and towards the center of the east to west axis of the Island. Overall, the height of the buildings should step down from highest at the center of the Island to the lowest at the edges. This will provide the maximum views of the bays on either side of the Island.

Concerning views, it is important to understand that the water (other than a horizon line) cannot be seen from most positions on the Island. This is why at every possible location at the upper stories there should be places where the glimpses of the water are possible—like stair well landings, bridges, etc.

PEDESTRIAN LEVEL CONNECTIONS. The second level pedestrian bridge connections among the various buildings that were pioneered by the Center for Instruction should be continued everywhere that it is possible. Refer to Illustration No. 11.6 PEDESTRIAN BRIDGE AT CENTER FOR INSTRUCTION. Should parking garages be constructed, they should be connected at this level. Such a network of connectors could allow the University to function after a storm even while the first level was being completely reconstructed. Such bridges also enhance the visual effect of the landscaping.
BRANDING STYLE
There is need for a sub set of the style that has evolved for fifty years on the island campus of TAMU—CC. While the existing introverted style is highly functional and very appropriate—especially in combination with the lush tropical landscaping—it is lacking in interest that is needed in such locations as the entrances and the southern edge (potential additional elevated housing). This Neo Coast Guard Station style would employ a raised floor level supported by cylindrical concrete columns like a beach house on its wooden pilings, sand tan stucco, concrete, or stone, and a standing seam metal roof of galvanized steel or copper.

A campanile type of structure in this branding style is needed to mark the entrances and to contrast with the horizontal quality of a place that can see the edge of the Earth. This style and the campanile-like device can do two things. It can provide a richer thematic expression for the existing architecture, and it can serve as the theme element for satellite campus locations both on the immediate mainland across the bridge and elsewhere in the Corpus Christi region.

Somewhat smaller in scale but richer in external appearance, this style could also be employed for the future extensions of housing on the southern edge of the Island and perhaps for an observation tower at the Hans Suter Wildlife Area.

SUMMARY
The architectural style of the TAMU—CC campus has evolved over time. Beginning as the frugal and austere contemporary style of a small private religious school, it has continued to evolve in a harmonious continuum. The two most obvious characteristics are the ruggedness of design for the aggressive environment (and potential tropical storms) of the riparian edge and the simplicity of its function as a backdrop for a remarkable tropical landscape. The next phase of its evolution is the creation of a branding style perhaps resembling the riparian edge style of the old Coast Guard stations.

Recommendations:
1. Continue to evolve a harmonious style of architecture that unifies the campus visually.
2. Develop a complimentary small scale style of architecture that expresses the riparian edge.
3. Continue to design buildings that interact with and maximize the impact of the landscaping.
4. Continue to design buildings that will weather the aggressive atmosphere and storm conditions to the maximum extent possible.